Articles les plus récents
Répondez à toutes vos questions grâce aux articles et témoignages proposés par les experts de Voxco et ses partenaires du secteur.
Inspire. Learn. Create.
Text Analytics & AI
How to Choose the Right Solution
The Latest in Market Research
Market Research 101

Text Analytics & AI
La valeur de l'analyse ouverte dans les études de marché : Transformer les questions ouvertes et leur analyse pour les professionnels des études de marché
Les questions ouvertes et leur analyse fournissent une riche source d’informations qui va au-delà des limites des données structurées, offrant une meilleure compréhension du sentiment des clients, des tendances émergentes et de l’expérience globale. Qu’ils soient recueillis dans le cadre d’enquêtes, d’évaluations de clients ou de médias sociaux, ces commentaires peuvent être une mine d’or pour l’entreprise, mais leur analyse efficace peut s’avérer difficile. Pour ceux qui ont affaire à des milliers de questions et de réponses ouvertes, les méthodes traditionnelles telles que la lecture des questions ouvertes, le calcul des réponses dans Excel, ou tout simplement le manque de capacité ou d’outils adéquats pour analyser le retour d’information, deviennent insurmontables. En outre, l’utilisation d’outils génériques d’intelligence artificielle comme ChatGPT s’avère souvent inadéquate. Sans une solution qualifiée pour analyser facilement les réponses ouvertes, les professionnels des études de marché risquent de générer des résultats incomplets ou inexacts, ce qui peut entraîner des retards et des inefficacités dans l’achèvement des projets.
Chez Voxco, l’une des raisons pour lesquelles nous sommes enthousiastes à l’idée d’intégrer Ascribe dans notre plateforme d’enquête en ligne est la façon dont Coder et CX Inspector d’Ascribe simplifient et rationalisent l’analyse ouverte, en particulier pour les entreprises et les professionnels de l’étude de marché. Ces outils s’appuient sur les dernières avancées en matière d’intelligence artificielle, facilitant l’obtention d’informations pertinentes à partir de vastes quantités de données ouvertes. Ce lancement de produit passionnant met en évidence notre engagement commun à offrir des solutions innovantes qui aident les professionnels d’études de marché à prendre des décisions plus marquantes.
L'importance des questions ouvertes et de leur analyse
- Une connaissance plus approfondie des clients : L’analyse ouverte offre une vision plus complète des comportements, des motivations et des sentiments des clients, ce qui permet aux entreprises de mieux comprendre leur public.
- Découvrir des informations cachées : Les réponses ouvertes peuvent révéler des informations inattendues qui échappent aux données structurées, offrant ainsi une fenêtre précoce sur de nouvelles tendances et opportunités.
- Saisir les nuances : Contrairement aux réponses structurées, les réponses ouvertes permettent aux clients d’exprimer leurs sentiments et leurs expériences avec leurs propres mots, fournissant ainsi un contexte précieux qui aide les entreprises à comprendre les moteurs émotionnels et les points de douleur.
- Identifier les tendances émergentes : En analysant les réponses ouvertes, les entreprises peuvent repérer de nouvelles tendances qui n’auraient pas été prises en compte lors de la conception initiale de l’enquête, ce qui leur permet de réagir rapidement.
- Comprendre le « pourquoi » : Alors que les données quantitatives montrent ce qui se passe, les réponses ouvertes révèlent les raisons pour lesquelles les clients se comportent comme ils le font, ce qui permet d’obtenir des informations plus concrètes.
Comment Coder et CX Inspector d'Ascribe peuvent aider
Les outils leaders d’Ascribe permettent l’analyse des réponses ouvertes à l’échelle avec une plus grande précision et rapidité en combinant de façon transparente l’intelligence artificielle avec l’expertise humaine. Voici comment Ascribe Coder et CX Inspector, tous deux récemment mis à jour avec Theme Extractor 2.0 et Ask Ascribe, permettent aux professionnels d’agir :
Theme Extractor 2.0
Analyse automatiquement plus de 95% des réponses ouvertes et génère des codes précis et comparables à ceux des utilisateurs. L’outil élimine les chevauchements entre les thèmes et fournit des résultats plus nets et plus rapides, ce qui est idéal pour rationaliser le processus de recherche.
Ask Ascribe
Ask Ascribe permet aux utilisateurs d’interroger leurs données en temps réel en utilisant un langage naturel. Cette approche interactive permet d’identifier rapidement les thèmes clés, les émotions et les domaines d’amélioration, ce qui permet aux entreprises d’agir plus rapidement.
Ascribe Coder : Améliorer la productivité du codage
Ascribe Coder améliore la productivité en convertissant le texte non structuré en données structurées. Voici comment :
- Codage humain guidé par l’IA : Combine l’IA et l’intelligence humaine pour accélérer le processus de codage tout en maintenant la précision.
- Automatisation personnalisable : Permet aux utilisateurs d’ajuster le niveau d’automatisation en fonction des besoins du projet, assurant ainsi le contrôle des coûts, des délais et de la précision.
- Intégration des données : Intègre les commentaires ouverts aux données d’enquête, offrant ainsi une vue à 360 degrés de l’expérience client.
- Collaboration multi-utilisateurs : Permet à plusieurs membres de l’équipe de coder des projets simultanément, afin d’obtenir des résultats plus rapidement.
CX Inspector : Analyse de texte avancée pour des informations plus approfondies
CX Inspector offre une plateforme robuste pour l’extraction et la visualisation de thèmes, de sentiments et de tendances émergentes à partir de réponses ouvertes. Ses principales caractéristiques sont les suivantes
- Extraction instantanée de thèmes : Identifie automatiquement des thèmes clairs et descriptifs à partir des réponses ouvertes.
- Analyse des sentiments : Détecte et visualise instantanément le sentiment des clients, ce qui permet aux entreprises de hiérarchiser les problèmes en fonction de l’impact émotionnel.
- Informations pratiques : Combine la détection des thèmes et l’analyse des sentiments pour fournir des informations claires et concrètes qui peuvent être facilement partagées via des tableaux de bord et des rapports.
Conclusion : Libérer le plein potentiel des questions ouvertes et de leur analyse
Chez Voxco, joindre nos forces à celles d’Ascribe fait partie de notre mission qui consiste à donner aux professionnels des études de marché les outils les plus puissants pour analyser les questions ouvertes. Comme l’explique Rick Kieser, Directeur de la stratégie chez Voxco :
« Ascribe a consacré 25 ans à écouter les commentaires de ses clients et à analyser les commentaires ouverts, en s’associant avec les meilleurs cabinets d’études de marché au monde et les entreprises leaders de l’industrie. En écoutant attentivement les besoins de ces pionniers et en évoluant continuellement, Ascribe a fourni des solutions de pointe qui façonnent le futur de l’analyse de texte. Le lancement de Theme Extractor 2.0 et Ask Ascribe représente l’apogée de cette expertise – un point culminant de décennies d’innovation, de connaissances durement acquises, et le traitement de plus de 6 milliards de commentaires de clients. Nous sommes ravis d’apporter ces solutions aux clients de Voxco et de continuer à repousser les limites de l’innovation dans le domaine de la recherche. »
Avec Ascribe Coder et CX Inspector, les professionnels des études de marché peuvent efficacement catégoriser et agir sur les commentaires ouverts, conduisant à des décisions plus éclairées et améliorant l’expérience client dans son ensemble.
10/28/24
Read more

The Latest in Market Research
Les pièges de la pensée binaire dans les études de marché et le marketing
Prêt à relever le défi ? Nous avons invité Annie Pettit, experte en matière de qualité des données et d’engagement des participants, à partager quelques-unes de ses idées les plus stimulantes sur les techniques de recherche. Il y a beaucoup de place pour le désaccord, alors dites-nous ce que vous en pensez !
Simplifier la recherche scientifique en catégories binaires distinctes présente des avantages tentants. Les catégorisations en noir et blanc sont pratiques et facilitent l’interprétation, la compréhension, l’apprentissage, la mémorisation et l’application des concepts. Je suis introverti, vous êtes extraverti. Ceci est une recherche qualitative, cela est une recherche quantitative.
Cependant, le fait de s’appuyer sur des binômes pose également des problèmes. Souvent, les binômes ne parviennent pas à saisir les réalités plus subtiles. Ils ignorent les nuances et les interconnexions complexes. Les distinctions binaires sont artificielles.
Dans ce billet, je vais mettre en lumière quelques-uns des binômes artificiels les plus courants que nous avons créés dans le secteur de la recherche et proposer des idées pour vous aider à acquérir une compréhension plus précise des comportements humains que nous cherchons à comprendre sur la voie de l’élaboration de stratégies sociales et marketing plus efficaces.
L’étude de marché quantitative est une étude de marché qualitative déguisée
Qu’il s’agisse d’études de marché, d’études universitaires ou d’études sociales, la plupart des professionnels en comportement humain ont une préférence et une expertise pour les outils de collecte de données quantitatives ou qualitatives. Nous avons tendance à préférer les groupes de discussion aux questionnaires, les entretiens individuels à ceux de l’oculométrie, l’ethnographie à la biométrie. Nous avons un outil bien développé et nous savons comment l’utiliser pour résoudre la plupart de nos problèmes d’étude de marché.
Cependant, l’expérience humaine est 100% qualitative, et les études de marché quantitatives sont en fait des études de marché qualitatives déguisées. Les professionnels des études de marché demandent aux participants de fournir des réponses dans des cases distinctes, sans se rendre compte qu’ils leur demandent de pré-coder des interprétations hautement subjectives d’expériences complexes en options de réponses imparfaitement opérationnalisées. Ces réponses précodées ne sont ni plus précises ni plus valables que les verbatims ouverts qui sont ensuite codés par le professionnel d’étude de marché. Que le participant les code ou que le professionnel les code, il s’agit dans les deux cas de représentations d’expériences personnelles qualitatives entassées dans une boîte.
Nous aimons distinguer l’étude de marché quantitative comme étant mesurable, structurée et contrôlée, alors que l’étude de marché qualitative est également très mesurable, structurée et contrôlée. Nous aimons dire que l’étude de marché qualitative est riche et approfondie alors que l’étude de marché quantitative peut l’être également. Lorsqu’elles sont bien menées, les études qualitatives et quantitatives permettent aux personnes de révéler leurs émotions et motivations sous-jacentes. La recherche quantitative offre parfois une échelle et une puissance statistique, mais le reste peut être assez similaire.
Que peuvent faire les utilisateurs et les professionnels de l’étude de marché ? Le plus important est de reconnaître qu’aucune méthode n’est plus valable, plus utile ou plus importante. Il est irrationnel de privilégier les résultats d’une méthode par rapport à l’autre. Deuxièmement, les professionnels et les utilisateurs de la recherche devraient avoir plus qu’un niveau de formation de base en études qualitatives et quantitatives. Il n’est jamais bon de maîtriser une méthode et d’ignorer l’autre. Cela ne fait que limiter la perspective du professionnel de l’étude de marché, sa capacité à résoudre les problèmes et la solidité de ses résultats.
L'échantillonnage probabiliste : Une forme plus rigoureuse d'échantillonnage non probabiliste
Lorsqu’il s’agit de choisir entre l’échantillonnage probabiliste et l’échantillonnage non probabiliste d’êtres humains, la réalité est que presque tous les échantillonnages sont des échantillonnages non probabilistes. Il existe très peu de cas où chaque membre de la population est connu et où chaque participant sélectionné au hasard donne son consentement. L’échantillonnage probabiliste existe plus loin dans le continuum de l’échantillonnage non probabiliste.
Par exemple, chaque élève inscrit dans une école peut être identifié, mais il est impossible de forcer un échantillon aléatoire de cette population à participer à une étude. De même, même avec les registres de naissance, de décès, de conduite et de vote, il est impossible d’avoir une liste parfaite de tous les citoyens d’une ville et de forcer ensuite un échantillon aléatoire de ces personnes à participer à une étude. Des personnes seront toujours accidentellement exclues et beaucoup de celles qui sont incluses ne consentiront pas à participer. Presque toutes les tentatives d’échantillonnage probabiliste avec des personnes sont en fait des exemples d’échantillonnage non probabiliste plus rigoureux.
Quoi qu’il en soit, l’échantillonnage probabiliste n’est pas intrinsèquement supérieur à l’échantillonnage non probabiliste. Des erreurs d’échantillonnage, d’analyse des données et d’interprétation se glissent dans les deux méthodes. Tous les participants se comportent sur un continuum d’honnêteté, d’attention et de soin.
Que peuvent faire les utilisateurs et les praticiens de la recherche ? En fin de compte, le meilleur échantillon est celui qui convient le mieux à la tâche. Les échantillons non probabilistes sont idéaux pour la recherche exploratoire, les études pilotes, les études de cas, les populations de niche, les tendances, les tests de produits et, bien sûr, les contraintes de temps et de budget. Si vous avez besoin d’une extrapolation statistique plus précise, par exemple pour les sondages politiques, l’évaluation des politiques, l’analyse de l’entrée sur le marché ou la prévision de la demande, les méthodes qui s’approchent de l’échantillonnage probabiliste sont préférables.
Tout extraverti est un introverti
Nous adorons classer les gens en tant qu’hommes ou femmes, introvertis ou extravertis, ou acheteurs en ligne ou non. Les résultats de nos recherches sont des collections massives de binaires artificiels créés par l’homme. Or, l’expérience humaine, même l’attribut physique le plus discret, existe sur un spectre continu.
Les regroupements binaires ont leur raison d’être et peuvent être extrêmement utiles, mais il est important de se rappeler que nous créons arbitrairement les points de coupure qui deviennent ces regroupements binaires. Nous choisissons ces points de découpage par commodité et non parce qu’ils sont « vrais ».
Quelle que soit la manière dont nous classons les gens en groupes de personnalité, démographiques, commerciaux, sociaux ou autres, ces regroupements sont artificiels et existent sur un spectre continu. Un groupe « d’introvertis » pourrait être subdivisé en introvertis et extravertis. Et ce sous-groupe d’introvertis pourrait à nouveau être subdivisé en introvertis et extravertis, et ainsi de suite. Le fait d’être classé parmi les acheteurs de produits haut de gamme ou de produits à bas prix dépend de la personne avec laquelle vous faites vos achats, de la catégorie de produits, de l’heure de la journée et du fait que vous ayez faim ou non. Le fait d’être classé comme rural ou urbain peut dépendre de caractéristiques politiques, nationales, locales et autres.
Que peuvent faire les utilisateurs et les professionnels de l’étude de marché? N’oubliez pas que les tableaux de données sont arbitraires et modifiables. Ils peuvent être remaniés une, deux ou trois fois après l’examen des données préliminaires. Concevez vos premiers tableaux avec deux fois plus de groupes que nécessaire, même si la taille des échantillons est trop petite. Une fois les tableaux en main, vous pouvez évaluer les résultats et décider du nombre de groupes nécessaires et si ces groupes doivent être de taille égale.
Conclusion
La plupart des valeurs binaires sont arbitraires. Ils sont définis et appliqués par l’homme et peuvent être recodés en d’innombrables groupes significatifs. Bien qu’elles soient essentielles pour simplifier les complexités de notre monde, chaque représentation binaire donne aux professionnels de l’étude de marché une nouvelle occasion de s’arrêter et de remettre en question d’autres catégorisations tout aussi valables qui pourraient exister. La remise en question des binaires est une technique importante pour les professionnels de l’étude de marché et du marketing qui souhaitent révéler et expliquer les véritables complexités des comportements et des préférences des consommateurs, afin d’améliorer la précision et la pertinence des informations marketing.
Nous serions ravis de vous aider à obtenir les informations dont vous avez besoin pour démêler les complexités de vos clients et de votre communauté.
10/2/24
Read more

The Latest in Market Research
Naviguer dans la qualité des données dans le secteur de l'IA en études de marché
Je viens de passer le cap des six mois chez Voxco et c’est un véritable tourbillon ! J’adore apprendre à connaître tous les membres de notre équipe, la façon dont ils aident nos clients à répondre à un vaste éventail de besoins et de défis, et le potentiel que nous avons ensemble.
Lorsque je rejoins une entreprise en tant que nouveau PDG, l’une des premières choses que j’aime faire après avoir pris contact avec mon équipe est de rencontrer nos clients, d’écouter les experts du secteur et d’entendre les points de vue d’un grand nombre de parties prenantes. Qu’est-ce qui est important pour eux ? Quels sont les défis auxquels ils sont confrontés ? Qu’est-ce qui leur donne envie d’aller travailler tous les jours ?
En discutant avec les participants à des salons professionnels tels que Quirks et AAPOR, j’ai immédiatement constaté que l’IA avait été adoptée comme une technologie d’étude de marché transformatrice qui justifiait un investissement important. Les gens s’engagent véritablement dans cette technologie. En voici un exemple :
- La grande majorité des exposants des salons professionnels ont adopté des approches axées sur l’IA. Les présentateurs adoptent eux aussi une approche axée sur l’IA, en partie parce que c’est ce que recherchent les comités de conférence.
- Que leurs services clés comprennent la qualité des données, l’échantillonnage, l’analyse, les rapports ou autres, la plupart des instituts d’études mènent activement des projets internes d’IA. Environ la moitié de ces projets sont purement expérimentaux, mais l’autre moitié de ceux- ci sont déjà orientées vers les clients et génèrent des revenus.
Montrer et discuter des applications de l’IA dans les études de marché n’est toutefois que du bruit. Nous devons comprendre le rôle et l’ampleur de l’impact des technologies de l’IA. Afin d’éviter les dommages à long terme, nous devons mesurer, comprendre et travailler de manière proactive à la prévention de l’utilisation abusive de l’IA. Cela peut se produire de différentes manières.
- Mauvaise saisie des données : L’IA générative a de nombreux atouts, mais elle peut aussi entraîner des problèmes de qualité des données. Tout comme nous savons que de mauvaises méthodes de prélèvement et des échantillons de petite taille entraînent des taux d’erreur élevés et une généralisabilité minimale, il en va de même pour l’IA générative. Les hallucinations artificielles détruisent la validité, génèrent des idées erronées et conduisent à de mauvaises décisions commerciales. Les professionnels d’études de marché en IA doivent identifier et prévenir tous les types de pratiques non conformes en matière de données susceptibles d’induire en erreur les processus d’IA.
- Utilisations inadaptées : L’IA est étonnante dans de nombreuses circonstances, il est donc facile de l’utiliser au lieu de se fier à son instinct et à ses années d’expérience. Parfois, les données utilisées ne comprennent pas les données de base nécessaires pour faire des conclusions exactes. Parfois, nous utilisons un outil d’IA généraliste plutôt qu’un outil d’IA spécifique à la recherche. Les professionnels d’étude de marché doivent tenir compte des forces et des faiblesses de tout outil d’IA qu’ils utilisent afin d’éviter les biais involontaires qui conduisent à des décisions erronées.
- Absence de validation : Les professionnels d’étude de marché adorent les données, l’expérimentation et la validation. Cependant, l’IA est encore en développement et il existe peu de données de marché pour valider les nouvelles techniques. Nous ne savons pas encore si une approche qui a fonctionné pour un test publicitaire sera efficace pour toutes les catégories, tous les publics cibles, toutes les régions et tous les objectifs. Il est donc nécessaire de disposer d’une documentation complète et de bases de données solides.
Bien sûr, les outils d’IA ont déjà fait leurs preuves et sont d’une valeur inestimable. Des outils comme Ascribe (récemment acquis dans le cadre de la plateforme Voxco) ont déjà aidé le secteur de l‘étude de marché à résoudre un problème de longue date consistant à éviter de coder les réponses ouvertes simplement en raison de contraintes de temps et de coût. Étant donné que de nombreux questionnaires comportent au moins dix réponses ouvertes courtes et plusieurs réponses ouvertes longues, cela représentait une perte de temps décevante pour les répondants et une perte d’informations précieuses pour les marques. Il s’agit là d’un problème majeur résolu.
J’ai hâte de voir comment l’IA continue d’évoluer pour améliorer les opérations commerciales, les processus de recherche et l’expérience des clients. Avec une approche proactive de la qualité et de la validation, les possibilités sont infinies. J’aimerais beaucoup connaître vos expériences en matière d’IA, alors n’hésitez pas à vous connecter avec moi sur LinkedIn ou à parler à l’un de nos experts en enquêtes.
9/18/24
Read more

The Latest in Market Research
Dans les coulisses des sondages : Naviguer dans les intentions de vote avec le Dr Don Levy
Introduction
Les sondages, pierre angulaire de l’étude de marché politique et sociale, ne se limitent pas à poser quelques questions et à compiler les résultats. Il s’agit d’un processus complexe, façonné par de nombreuses variables qui peuvent avoir un impact sur la précision et la fiabilité des données. Au cœur de cette complexité se trouve le défi de comprendre les intentions des électeurs dans l’environnement changeant du comportement humain et des influences externes.
Pour faire la lumière sur ces défis, nous nous sommes récemment entretenus avec le Dr Don Levy, directeur du Siena College Research Institute et personnalité respectée du monde des sondages, qui possède une vaste expérience dans ce domaine. Dr Levy a partagé avec nous des informations précieuses sur le monde des sondages, offrant un aperçu détaillé des pratiques et des facteurs qui influencent les intentions des électeurs. Ses connaissances approfondies, tirées de notre discussion avec lui, ainsi que de ses podcasts avec l’AAPOR et WXXI News, permettent de mieux comprendre les méthodologies qui sous-tendent les sondages efficaces.
Dans ce blog, nous allons explorer les idées du Dr Levy sur les défis que représentent la compréhension du comportement des électeurs, la garantie de réponses exactes et l’obtention d’une représentation complète.
Comprendre le comportement des électeurs
A. Le défi de cerner les intentions des électeurs
Prédire le comportement des électeurs est un défi complexe qui va au-delà du simple comptage des préférences. Les intentions des électeurs sont influencées par de nombreux facteurs, notamment:
- Les croyances personnelles: Les facteurs personnels tels que les valeurs individuelles, les expériences et les priorités peuvent influencer les décisions des électeurs de manière significative.
- La dynamique sociale: Les influences sociales, y compris les opinions des pairs et les normes communautaires, influencent aussi généralement les décisions des électeurs.
- Contexte politique: Le climat politique, marqué par des changements dans les politiques, les profils des candidats et les stratégies de campagne, complique encore la tâche de prédire comment les électeurs voteront.
Ces éléments sont non seulement divers, mais ils interagissent également de manière imprévisible, ce qui rend la prévision des résultats électoraux à la fois difficile et complexe.
B. Le rôle de la « probabilité de voter » dans les modèles de sondage
Pour faire face à ces complexités, les sondeurs s’appuient souvent sur la probabilité que les électeurs participent à l’élection en tant que variable critique. Cette approche consiste à évaluer non seulement les électeurs qui ont l’intention de voter, mais aussi la probabilité qu’ils donnent suite à leurs intentions. Les électeurs assidus, c’est-à-dire ceux qui participent régulièrement aux élections, se voient accorder plus de poids dans les calculs des modèles de sondage, ce qui témoigne de leur plus grande fiabilité à influencer les résultats des élections.
En revanche, les électeurs intermittents ou moins engagés sont pondérés dans les modèles. Cette différenciation permet d’ajuster les données afin de mieux représenter la population des électeurs probables, offrant ainsi un aperçu plus précis des résultats potentiels des élections. En se concentrant sur ces variables, les sondeurs cherchent à affiner leurs prédictions et à améliorer la précision de leurs résultats.
C. Réflexions de Dr Don Levy
Selon le Dr Levy, la compréhension et l’application adéquate de la probabilité de voter sont essentielles pour gérer les incertitudes inhérentes aux sondages. Le Dr Levy souligne qu’en évaluant soigneusement les électeurs constants et en ajustant ceux qui sont moins susceptibles de voter, les sondeurs peuvent plus efficacement capturer les véritables intentions de l’électorat.
« Nous utilisons la probabilité de vote d’un électeur comme variable de pondération. Par exemple, si une personne a voté à toutes les élections et qu’elle nous dit qu’elle votera absolument, on peut considérer qu’elle a une probabilité proche de 100 %. En revanche, pour les électeurs intermittents, s’ils se montrent moins attentifs à l’élection au cours de notre conversation, nous pondérons leur réponse.
L’évaluation de la fiabilité de leur probabilité est cruciale. Après l’élection, nous effectuons un suivi pour vérifier si ceux que nous avons classés comme ayant une forte probabilité de voter l’ont effectivement fait, évaluant ainsi notre précision prédictive au fil du temps ».
L’expertise de Dr Levy souligne l’importance de ces méthodologies pour affiner les pratiques de sondage et améliorer la fiabilité des prévisions électorales. Son point de vue souligne la nécessité d’adapter et de préciser en permanence les techniques de sondage afin de tenir compte de l’évolution du comportement des électeurs.
Traiter la question de l'honnêteté et des non-réponses
Garantir que les personnes interrogées fournissent des réponses véridiques est un défi fondamental dans le domaine des sondages. L’exactitude des données dépend fortement de l’honnêteté des participants, cependant plusieurs facteurs peuvent compromettre cette intégrité. Les personnes interrogées peuvent être influencées par un biais de désirabilité sociale, c’est-à-dire qu’elles donnent des réponses qu’elles croient plus acceptables ou plus favorables plutôt que leurs véritables opinions. En outre, la brièveté des entretiens peut parfois conduire à des réponses moins réfléchies ou plus réservées, ce qui complique encore l’exactitude des données collectées.
Parmi les scénarios typiques où l’honnêteté peut être compromise, on peut citer les sujets sensibles ou les questions susceptibles de provoquer de fortes réactions émotionnelles. Dans ce cas, les personnes interrogées peuvent être réticentes à partager leurs véritables sentiments, ce qui fausse les résultats.
B. Le problème des non-réponses
Les non-réponses, en particulier celles des ardents défenseurs d’un candidat ou d’une cause spécifique, constituent un autre défi de taille. Ces personnes peuvent s’abstenir de participer en raison de leur méfiance à l’égard des médias ou des instituts de sondage, ou parce qu’elles pensent que leurs réponses ne seront pas prises au sérieux. Cette réticence peut créer une lacune dans les données, laissant certains groupes sous-représentés.
La méfiance à l’égard des médias et des instituts de sondage aggrave ce problème, entraînant des taux de réponse plus faibles de la part de certains groupes démographiques. Cette situation est problématique car elle peut fausser la représentation globale des intentions et des opinions des électeurs, ce qui a un impact sur la fiabilité des résultats des sondages.
C. Les techniques pour une représentation précise
Pour relever ces défis, les sondeurs emploient diverses techniques afin de garantir une représentation exacte.
- Exploration des attitudes: Les sondeurs évaluent les attitudes des personnes interrogées à l’égard des questions sociales et sur les médias afin d’identifier et d’éliminer les préjugés potentiels. Cette approche permet d’anticiper et d’ajuster les non-réponses et la malhonnêteté.
- Appliquer des pondérations: Les ajustements statistiques sont utilisés pour corriger les déséquilibres dans les données. En appliquant des pondérations, les sondeurs améliorent la précision de la représentation des groupes qui ne répondent pas et la fiabilité générale des données.
D. Réflexions du Dr Don Levy
Le Dr Levy aborde la question des non-réponses et de la malhonnêteté par une approche à multiples facettes. Il souligne l’importance de comprendre le point de vue des répondants et de procéder à des ajustements pour tenir compte des biais et des données manquantes. Son approche associe une analyse rigoureuse des données, la transparence et des efforts continus pour s’engager auprès de divers groupes de répondants.
« Lors d’entretiens d’une durée de 7 à 12 minutes, les participants ont généralement tendance à dire la vérité. Cependant, notre principal défi concerne les non-réponses. Pour y remédier, nous posons des questions sur diverses attitudes, y compris leur point de vue sur les médias et les questions sociales actuelles. Parfois, nous appliquons des pondérations basées sur ces attitudes afin de mieux représenter le groupe des non-répondants.
Contrairement à certains qui se concentrent uniquement sur des régions spécifiques, comme l’ouest de la Pennsylvanie, nous adoptons une approche plus détaillée, reconnaissant la diversité au sein des régions, en faisant par exemple la distinction entre Pittsburgh et le reste de l’ouest de la Pennsylvanie. Cette approche nécessite un travail supplémentaire, en incitant le personnel de notre centre d’appel à rechercher des échantillons représentatifs, même parmi les groupes démographiques les moins susceptibles de répondre ».
L’expertise de Dr Levy souligne la nécessité d’affiner les méthodes de sondage afin de surmonter ces obstacles et de produire des résultats plus fiables et plus représentatifs. Son approche met en évidence l’engagement continu à améliorer les pratiques de sondage et à traiter les complexités du comportement de l’électeur et de la précision des réponses.
Assurer une représentation complète
A. La nécessité d'échantillons représentatifs
Il est essentiel pour les instituts de sondage de disposer d’un échantillon qui reflète fidèlement l’ensemble de la population. Les échantillons représentatifs garantissent que les données collectées reflètent la diversité et la complexité de l’ensemble de l’électorat. Cette représentation est essentielle pour obtenir des informations précises sur les intentions et les comportements des électeurs.
L’un des principaux défis à relever pour obtenir des échantillons représentatifs est de composer avec des régions à la démographie variée. Dans ces régions, capturer l’ensemble des opinions nécessite une attention particulière et une compréhension nuancée des différents sous-groupes. Si l’on ne tient pas compte de ces complexités démographiques, les résultats des sondages risquent d’être faussés et de conduire à des conclusions trompeuses.
B. Approche approfondie de l'échantillonnage
Pour surmonter ces difficultés, les instituts de sondage adoptent une approche détaillée de l’échantillonnage. Au lieu de s’appuyer uniquement sur de vastes zones géographiques, les sondeurs se concentrent sur la compréhension et la prise en compte des nuances régionales. Cela implique de segmenter les régions en zones plus petites et plus spécifiques afin de saisir avec précision la diversité qui les caractérise.
Une approche d’échantillonnage géographique large peut fournir une vue d’ensemble, mais manque de la finesse nécessaire pour comprendre les variations locales. En revanche, une stratégie d’échantillonnage détaillée et nuancée consiste à diviser les régions en unités plus petites et à appliquer des méthodologies ciblées pour s’assurer que tous les groupes démographiques sont représentés. Cette approche méticuleuse permet d’obtenir une image plus précise et plus complète des intentions des électeurs.
C. Réflexions du Dr Don Levy
Le Dr Levy souligne l’importance d’un échantillonnage détaillé pour améliorer la précision des sondages. Selon lui, la compréhension et la prise en compte des nuances régionales ont un impact significatif sur la fiabilité des résultats des enquêtes. Il préconise une approche détaillée de l’échantillonnage qui va au-delà des classifications géographiques générales pour saisir les complexités des diverses populations.
« Un recensement rigoureux, un échantillonnage stratifié, une recherche agressive pour conserver les décrochages – voilà toutes les mesures que nous prenons pour nous protéger contre la menace de résultats de sondages inexacts ».
Le Dr Levy souligne l’importance d’employer des techniques d’échantillonnage perfectionnées pour garantir que les données des sondages sont représentatives et reflètent la composition réelle de l’électorat. En se concentrant sur des méthodes d’échantillonnage minutieuses, les sondeurs peuvent améliorer la précision de leurs résultats et fournir des informations plus significatives sur le comportement des électeurs.
Conclusion
Il est essentiel de comprendre les particularités des sondages pour comprendre comment les intentions des électeurs sont mesurées et interprétées. Nous avons exploré les défis liés à la prédiction du comportement des électeurs, l’importance de l’honnêteté et de la gestion des non-réponses, ainsi que la nécessité de disposer d’échantillons complets et représentatifs.
Les sondeurs sont confrontés à un paysage complexe, mais grâce à des méthodes telles que la pondération de la probabilité de voter et des approches d’échantillonnage détaillées, ils s’efforcent de fournir des informations précises. Le point de vue de Dr Levy met en lumière les efforts déployés pour améliorer la précision des sondages et le rôle important qu’ils jouent dans l’information de la démocratie.
Alors que nous nous tournons vers l’avenir, l’optimisme de Dr Levy quant à l’évolution continue des sondages et à leur impact sur notre compréhension du sentiment public renforce la valeur des processus en coulisses dans l’élaboration du discours démocratique.
Institut de recherche du Siena College : Une force de premier plan dans le domaine des sondages d’opinion
Fondé en 1980 au Siena College, dans le Capital District de New York, le Siena College Research Institute (SCRI) mène un large éventail d’enquêtes régionales, nationales et d’État sur des questions politiques, économiques et sociales. Sous la direction de Dr Levy, le SCRI est devenu l’institut de sondage exclusif du New York Times. Le SCRI est un partenaire de confiance du New York Times, jouant un rôle essentiel dans l’élaboration des principaux sondages préélectoraux et des enquêtes sur des questions clés. Les résultats de SCRI sont régulièrement présentés dans des publications prestigieuses telles que le Wall Street Journal et le New York Times, et SCRI a été reconnu comme l’institut de sondage le plus précis d’Amérique par FiveThirtyEight.com. En tant que client privilégié de Voxco, le SCRI utilise la plateforme de Voxco pour alimenter ces efforts critiques, garantissant des informations précises et basées sur des données qui façonnent le discours public.
9/16/24
Read more

The Latest in Market Research
Créer des expériences clients exceptionnelles, une enquête à la fois
Prêt pour une nouvelle approche sur l’engagement des participants ? C’est ce que nous pensons ! C’est pourquoi nous avons invité Annie Pettit, experte du secteur en matière de qualité des données et d’engagement des participants, à nous faire part de ses réflexions. Que vous soyez à la recherche de conseils pratiques ou d’idées stimulantes, ce billet vous fera réfléchir. Bonne lecture !
Créer une expérience attrayante pour les clients est si important que presque tous les groupes de vente au détail ont élaboré des lignes directrices détaillées sur la façon de le faire. Parmi des milliers d’autres guides, manuels et recueils, l’AMA propose un Customer Engagement Playbook et Workbook, Hubspot son « Ultimate Guide to Customer Engagement in 2024 » et Forbes son « Customer Engagement in 2024 : The Ultimate Guide ».
Les détaillants, les spécialistes du marketing et les parties prenantes consacrent beaucoup d’efforts à la création d’expériences attrayantes pour leurs consommateurs, leurs clients et leurs employés, et ce pour de bonnes raisons. Selon Gallup, l’augmentation de l’engagement des clients peut entraîner une hausse de 10 % des bénéfices, de 66 % des ventes et de 25 % de la fidélité des clients.
Parce qu’elles consacrent beaucoup de temps à la recherche, les études de marché ont une connaissance approfondie de ce qu’est réellement une expérience client exceptionnelle et de l’importance qu’elle représente. Ils savent également que la participation à des études sociales et marketing peut être une expérience extrêmement intéressante et satisfaisante sur le plan personnel.
Pourquoi, alors, l’expérience d’étude de marché semble-t-elle être un échange si transactionnel ? Les professionnels des études rédigent des enquêtes. Les participants donnent des réponses. L’expérience des participants diminue. Les taux de réponse diminuent. Et ainsi de suite.
Il est temps pour les responsables de l’étude de marché et du marketing d’appliquer ce qu’ils ont appris sur l’expérience client à l’expérience de l’enquête. Examinons quelques moyens de créer des expériences d’enquête intensément engageantes pour les participants, qui profiteront en fin de compte aux parties prenantes et augmenteront le retour sur investissement de l’enquête.
Des incitants intéressants et des questions ludiques sont des éléments essentiels
Lorsque nous pensons à créer une expérience de recherche engageante, la plupart d’entre nous se tournent vers la création d’une expérience plus amusante et divertissante. Outre la création de questions de meilleure qualité, nous y parvenons en :
- Offrant des récompenses telles que de l’argent, des points de fidélité et des prix alléchants. Les participants aux études sont des êtres humains, après tout, et quelque chose vaut souvent mieux que rien pour convaincre quelqu’un de « cliquer pour commencer » une enquête. C’est un pas en avant pour les taux de réussite et la représentation.
- Incorporer des types de questions ludiques qui contribuent à maintenir la motivation des personnes. Par exemple, plutôt que de demander aux gens ce qu’ils préfèrent dans dix compagnies d’assurance différentes, on peut leur demander quel est le super pouvoir de chaque compagnie. Ou encore, quel est l’animal, le personnage de bande dessinée ou la célébrité qui reflète le mieux chaque compagnie.
Toutefois, les incitants et les questions ludiques sont des éléments essentiels. Les participants les recherchent et s’attendent à les trouver dans toutes les études. Si vos études n’intègrent pas déjà ces caractéristiques, il est temps d’exiger mieux.
Passez à l'étape suivante pour susciter la curiosité et encourager le développement personnel
Les expériences intrinsèquement engageantes sont peut-être plus importantes encore. De nombreuses personnes aiment participer à l’expérience de la recherche parce qu’elles apprécient d’être entendues et d’être informées sur les nouveaux produits et services. Il existe cependant des opportunités de développement personnel bien plus importantes. En voici un exemple :
- Les questionnaires qui intègrent des énoncés de personnalité, de description ou de préférence peuvent encourager l’auto-réflexion et mettre en évidence de nouveaux domaines de croissance et de développement personnel.
- Les études sur la santé, la forme physique, l’alimentation, les boissons, les finances et l’environnement peuvent amener les gens à réfléchir à leurs comportements personnels et à se demander s’ils souhaitent modifier certains aspects de leur mode de vie.
- De nombreuses études sont simplement un bon moyen de stimuler la réflexion, d’améliorer la concentration et de découvrir de nouvelles façons de penser, en particulier pour les personnes qui ont moins d’occasions de le faire dans leur vie quotidienne.
Revenons un instant sur l’expérience client. Lorsque les spécialistes du marketing présentent de nouveaux produits ou services aux clients, ils en expliquent clairement les avantages. Les gens s’attendent à découvrir ce qu’il y a de nouveau, d’amusant ou d’intrigant dans un produit qu’ils envisagent d’acheter.
L’expérience d’étude de marché ne devrait pas être différente. Les professionnels des études doivent aider les participants à comprendre les avantages qu’ils tireront de leur participation. Voici quelques moyens d’y parvenir, parmi tant d’autres.
- Au début d’un questionnaire, invitez les gens à considérer leur participation comme un petit voyage à la découverte de soi. Invitez-les à exploiter au maximum leur curiosité et à essayer de nouvelles façons de penser.
- À la fin de l’étude, ajoutez une question invitant les participants à partager avec les autres ce qu’ils ont appris sur eux-mêmes grâce à leur participation. La plupart des participants sont curieux de connaître les résultats des études de marché auxquels ils participent et, avec leur consentement, cette question est parfaite pour partager avec les autres ce qu’ils ont appris sur eux-mêmes.
- À la fin d’un questionnaire, proposez aux participants de partager des liens vers des sites Internet tiers dignes de confiance afin qu’ils puissent en savoir plus sur le sujet. Si quelqu’un sélectionne la case « Oui, veuillez partager », proposez des liens vers des cours universitaires gratuits ou des sites web neutres et fiables contenant des informations sur les finances, l’environnement, les soins de santé ou le développement de l’enfant.
N’oubliez pas que ces avantages doivent toujours être offerts avec le consentement des participants.
Aider les gens à être le changement qu'ils désirent voir
C’est drôle de plaisanter sur les algorithmes en ligne qui nous présentent pendant des semaines des publicités pour des aspirateurs alors que nous venons d’en acheter un qui devrait durer vingt ans. En revanche, dans le domaine de l’étude de marché, c’est une autre histoire.
Après avoir acheté cet aspirateur (ou ce savon ou cette bière), nous voulons en parler pendant des semaines. Nous voulons nous assurer que d’autres personnes bénéficient de notre expérience. Nous voulons partager nos opinions, offrir des conseils et contribuer à l’élaboration de nouvelles innovations. Il est agréable d’aider d’autres personnes à prendre des décisions qui leur conviennent.
En participant à des études de marché, les gens ne se contentent pas d’aider les autres à acheter un meilleur aspirateur. Le partage d’expériences avec de nouveaux produits et services aide les marques à concevoir des produits qui permettent aux gens de manger plus sainement, de s’amuser davantage, de devenir plus autonomes, d’accéder à des services sociaux essentiels et d’améliorer la vie elle-même. La recherche améliore la vie et peut même sauver des vies.
Comme auparavant, nous ne pouvons pas simplement supposer que les gens connaissent les avantages de la participation à la recherche. Tout comme les spécialistes du marketing disent aux gens que cet aspirateur a la meilleure puissance d’aspiration, les chercheurs devraient dire aux gens comment la recherche aide la communauté au sens large. Comment agir ?
- Au début d’une étude, rappelez aux gens les avantages qui en découleront. Vous connaissez déjà les objectifs de l’entreprise et les objectifs de l’étude de marché. Il vous suffit de les traduire en langage accessible aux consommateurs. Dites-leur que leur participation aidera de nombreuses personnes à l’avenir en créant des produits et des services plus avantageux.
- À la fin d’une étude, proposez des résultats plus spécifiques. Expliquez que leurs contributions aideront les personnes souffrant de problèmes de peau à trouver des produits cosmétiques moins irritants. Ou encore, que tout le monde mérite un peu de joie dans sa vie, même si cela signifie qu’il faut déterminer la prochaine saveur de chips qu’on va préparer. Dites aux gens que leurs contributions leur permettent de rester en bonne santé, de prendre des repas en famille ou de disposer de plus de temps libre.
Naturellement, il est important de ne pas compromettre les objectifs de la recherche et de veiller à ce que les détails soient laissés à la fin de la campagne.
Sommaire
Il est si facile de sortir un modèle d’enquête, de changer les noms de marque, d’ajouter quelques nouvelles questions et de le lancer. Nous avons des dizaines d’années d’expérience dans ce domaine. Cependant, il est temps de dire non aux modèles sur lesquels nous nous appuyons depuis des années et d’en créer un nouveau, et meilleur. Un modèle qui donne la priorité à l’expérience de l’enquête, tout comme les spécialistes du marketing, les entreprises et les organisations ont donné la priorité à l’expérience des clients et des employés.
Avec une enquête plus attrayante et plus satisfaisante sur le plan personnel, les participants à l’étude auront beaucoup plus de facilité à s’engager réellement dans le contenu, à réfléchir profondément à leurs réponses et à fournir des données plus riches et plus précises. En fin de compte, investir dans l’expérience de l’enquête se traduit par des informations de meilleure qualité, des décisions plus éclairées et des clients plus heureux.
Si vous tenez à avoir des clients satisfaits, n’hésitez pas à contacter nos experts en enquêtes. Ils seront ravis de vous aider à collecter des données plus valides et plus fiables. Parlez à un expert en enquêtes.
8/29/24
Read more
Text Analytics & AI
What is Linguistics Analysis?
Linguistic Analysis Explained
Editor’s note: This post was originally published on Ascribe and has been updated to reflect the latest data
Figuring out what humans are saying in written language is a difficult task. There is a huge amount of literature, and many great software attempts to achieve this goal. The bottom line is that we are a long way off from having computers truly understand real-world human language. Still, computers can do a pretty good job at what we are after. Gathering concepts and sentiment from text.
The term linguistic analysis covers a lot of territory. Branches of linguistic analysis correspond to phenomena found in human linguistic systems, such as discourse analysis, syntax, semantics, stylistics, semiotics, morphology, phonetics, phonology, and pragmatics. We will use it in the narrow sense of a computer’s attempt to extract meaning from text – or computational linguistics.
Linguistic analysis is the theory behind what the computer is doing. We say that the computer is performing Natural Language Processing (NLP) when it is doing an analysis based on the theory. Linguistic analysis is the basis for Text Analytics.
There are steps in linguistic analysis that are used in nearly all attempts for computers to understand text. It’s good to know some of these terms.
Here are some common steps, often performed in this order:
1. Sentence detection
Here, the computer tries to find the sentences in the text. Many linguistic analysis tools confine themselves to an analysis of one sentence at a time, independent of the other sentences in the text. This makes the problem more tractable for the computer but introduces problems.
“John was my service technician. He did a super job.“
Considering the second sentence on its own, the computer may determine that there is a strong, positive sentiment around the job. But if the computer considers only one sentence and individual word at a time, it will not figure out that it was John who did the super job.
2. Tokenization
Here the computer breaks the sentence into words. Again, there are many ways to do this, each with its strengths and weaknesses. The quality of the text matters a lot here.
“I really gotmad when the tech told me *your tires are flat*heck I knew that."
Lots of problems arise here for the computer. Humans see “gotmad" and know instantly that there should have been a space. Computers are not very good at this. Simple tokenizers simply take successive “word" characters and throw away everything else. Here that would do an OK job with flat*heck → flat heck, but it would remove the information that your tires are flat is a quote and not really part of the surrounding sentence. When the quality of text, syntax, or sentence structure is poor, the computer can get very confused.
This can also pose a problem when new words are introduced, or there are multiple meanings of words in one response or group of responses.
3. Lemmatization and cleaning
Most languages allow for multiple forms of the same word, particularly with verbs. The lemma is the base form of a word. So, in English, was, is, are, and were are all forms of the verb to be. The lemma for all these words is be.
There is a related technique called stemming, which tries to find the base part of a word, for example, ponies → poni. Lemmatization normally uses lookup tables, whereas stemming normally uses some algorithm to do things like discard possessives and plurals. Lemmatization is usually preferred over stemming.
Some linguistic analysis attempt to “clean up" the tokens. The computer might try to correct common misspellings or convert emoticons to their corresponding words.
4. Part of speech tagging
Once we have the tokens (words) we can try to figure out the part of speech for each of them, such as noun, verb, or adjective. Simple lookup tables let the computer get a start at this, but it is really a much more difficult job than that. Many words in the English language can be both nouns and verbs (and other parts of speech). To get this right, the words cannot simply be considered one at a time. The use of language can vary, and mistakes in part of speech tagging often lead to embarrassing mistakes by the computer.
Common Linguistic Analysis Techniques Explained
Most linguistic analysis tools perform the above steps before tackling the job of figuring out what the tokenized sentences mean. At this point, the various approaches to linguistic analysis diverge. We will describe in brief the three most common techniques.
Approach #1: Sentence parsing
Noam Chomsky is a key figure in linguistic theory. He conceived the idea of “universal grammar", a way of constructing speech that is somehow understood by all humans and used in all cultures. This leads to the idea that if you can figure out the rules, a computer could do it, and thereby can understand human speech and text. The sentence parsing approach to linguistic analysis has its roots in this idea.
A parser takes a sentence and turns it into something akin to the sentence diagrams you probably did in elementary school:
At the bottom, we have the tokens, and above them classifications that group the tokens. V = verb, PP = prepositional phrase, S = sentence, and so on.
Once the sentence is parsed the computer can do things like give us all the noun phrases. Sentence parsing does a good job of finding concepts in this way. But parsers expect well-formed sentences to work on. They do a poor job when the quality of the text is low. They are also poor at sentiment analysis.
Bitext is an example of a commercial tool that uses sentence parsing. More low-level tools include Apache OpenNLP, Stanford CoreNLP, and GATE.
Approach #2: Rules-Based Analysis
Rules-based linguistic analysis takes a more pragmatic approach. In a rule-based approach, the focus is simply on getting the desired results without attempting to really understand the semantics of the human language. Rules-based analysis always focuses on a single objective, say concept extraction. We write a set of rules that perform concept extraction and nothing else. Contrast this with a parsing approach, where the parsed sentence may yield concepts (nouns and noun phrases) or entities (proper nouns) equally well.
Rules-based linguistic analysis usually has an accompanying computer language used to write the rules. This may be augmented with the ability to use a general-purpose programming language for certain parts of the analysis. The GATE platform provides the ability to use custom rules using a tool it calls ANNIE, along with the Java programming language.
Rules-based analysis also uses lists of words called gazetteers. These are lists of nouns, verbs, pronouns, and so on. A gazetteer also provides something akin to lemmatization. Hence the verbs gazetteer may group all forms of the verb to be under the verb be. But the gazetteer can take a more direct approach. For sentiment analysis the gazetteer may have an entry for awful, with sub-entries horrible, terrible, nasty. Therefore, the gazetteer can do both lemmatization and synonym grouping.
The text analytics engines offered by SAP are rules-based. They make use of a rule language called CGUL (Custom Grouper User Language). Working with CGUL can be very challenging.
Here is an example of what a rule in the CGUL language looks like:
#subgroup VerbClause: {
(
[CC]
( %(Nouns)*%(NonBeVerbs)+)
|([OD VB]%(NonBeVerbs)+|%(BeVerbs) [/OD])
|([OD VB]%(BeVerbs)+|%(NonBeVerbs)+ [/OD])
[/CC]
)
| ( [OD VB]%(NonBeVerbs)[/OD] )
}
At its heart, CGUL uses regular expressions and gazetteers to form increasingly complex groupings of words. The final output of the rules is the finished groups, for example, concepts.
Many rules-based tools expect the user to become fluent in the rule language. Giving the user access to the rule language empowers the user to create highly customized analyses, at the expense of training and rule authoring.
Approach #3: Deep learning and neural networks
The third approach we will discuss is machine learning. The basic idea of machine learning is to give the computer a bunch of examples of what you want it to do, and let it figure out the rules for how to do it. This basic idea has been around for a long time and has gone through several evolutions. The current hot topic is neural networks. This approach to natural language machine learning is based loosely on the way our brains work. IBM has been giving this a lot of publicity with its Watson technology. You will recall that Watson beat the best human players of the game of Jeopardy. We can get insight into machine learning techniques from this example.
The idea of deep learning is to build neural networks in layers, each working on progressively broader sections of the problem. Deep learning is another buzzword that is often applied outside of the area intended by linguistic researchers.
We won’t try to dig into the details of these techniques, but instead, focus on the fundamental requirement they have. To work, machine learning and artificial intelligence need examples. Lots of examples. One area in which machine learning has excelled is image recognition. You may have used a camera that can find the faces in the picture you are taking. It’s not hard to see how machine learning could do this. Give the computer many thousands of pictures and tell it where the faces are. It can then figure out the rules to find faces. This works really well.
Back to Watson. It did a great job at Jeopardy. Can you see why? The game is set up perfectly for machine learning. First, the computer is given an answer. The computer’s job is to give back the correct question (in Jeopardy you are given the answer and must respond with the correct question). Since Jeopardy has been played for many years, the computer has just what it needs to work with: a ton of examples, all set up just the way needed by the computer.
Now, what if we want to use deep learning to perform sentiment and language analysis? Where are we going to get the examples? It’s not so easy. People have tried to build data sets to help machines learn things like sentiment, but the results to date have been disappointing. The Stanford CoreNLP project has a sentiment analysis tool that uses machine learning, but it is not well regarded. Machine learning today can deliver great results for concept extraction, but less impressive results for sentiment analysis.
BERT
Recent advances in machine learning language models have added exciting new tools for text analysis. At the forefront of these is BERT, which can be used to determine whether two phrases have similar meanings.
BERT stands for Bidirectional Encoder Representations from Transformers. This technique has been used to create language models from several very large data sets, including the text from all of Wikipedia. To train a BERT model a percentage of the words in the training data set are masked, and BERT is trained to predict the masked words from the surrounding text. Once the BERT model has been trained we can present two phrases to it and ask how similar in meaning they are. Given the phrases, BERT gives us a decimal number between 0 and 1, where 0 means very dissimilar and 1 means very similar.
Given the phrase “I love cats", BERT will tell us the phrase “felines make great pets" is similar, but “it is raining today" is very dissimilar. This is very useful when the computer is trying to tell us the main themes in a body of text. We can use tools such as sentence parsing to partition the text into phrases, determine the similarity between phrases using BERT, and then construct clusters of phrases with similar meanings. The largest clusters give us hints as to what the main themes are in the text. Word frequencies in the clusters and the parse trees for the phrases in the clusters allow us to extract meaningful names for each cluster. We can then categorize the sentences in the text by tagging them with the names of the clusters to which they belong.
Summary
Linguistic analysis is a complex and rapidly developing science. Several approaches to linguistic analysis have been developed, each with its own strengths and weaknesses. To obtain the best results you should choose the approach that gives superior performance for the type of analysis you need. For example, you may choose a machine learning approach to identify topics, a rules-based approach for sentiment analysis, and a sentence parsing approach to identify parts of speech and their interrelationships.
If you’re not sure where to start on your linguistic and semantic analysis endeavors, the Ascribe team is here to help. With CXI, you can analyze open-ended responses quickly with the visualization tool – helping to uncover key topics, sentiments, and insights to assist you in making more informed business decisions. By utilizing textual comments to analyze customer experience measurement, CXI brings unparalleled sentiment analysis to your customer experience feedback database.
8/2/24
Read more
Text Analytics & AI
CX Inspector Named One of “11 Top Insight Platforms for 2024” by Quirk’s Magazine
One Click to Actionable Insights
Unlocking the true potential of open-end comments has never been easier. CX Inspector with Theme Extractor uncovers descriptive, actionable insights from open ends instantly, a significant leap forward in text analysis technology.
- Extracts descriptive themes with one click. Upload your data set and immediately charts and tables appear which highlight theme-based insights and visualize the results.
- Analyze any size data set in minutes. From several hundred to several thousand responses, CX Inspector can analyze the data set quickly.

- Dive deep into the data. Group key themes together, apply filters and sentiment, examine co-occurrences and generate trend reports and crosstabs with t-tests to understand both broad trends and granular details. Also, click through a theme to see the individual responses.
- Over 50 languages. CX Inspector analyzes responses in multiple languages and shows results in your choice of over 50 languages.
- X-Score measures customer satisfaction. X-Score, Ascribe’s proprietary measure, identifies the key drivers that will increase customer satisfaction and loyalty directly from open-end responses.
- Save and restore projects. Don’t let your work go to waste! Save your projects to restore for future use.
- Easily export data tables and charts. Seamlessly integrate results into reports and presentations.
Unleash the power of CX Inspector with Theme Extractor today and revolutionize how you uncover insights from open-ends to enable data-based decisions that drive customer satisfaction, loyalty and business success. Connect with us today at CX Inspector to learn more and request a free demo with your data set.
5/8/22
Read more
Text Analytics & AI
Testing Ascribe Rule Sets
This content has been archived. It may no longer be relevantAn Ascribe Rule Set lets you programmatically alter the results of linguistic analysis. To learn more about Rule Sets, see Introduction to Ascribe Rule Sets and Authoring Ascribe Rule Sets.
Your Rule Set may process thousands of findings when you use it in an Inspection. Therefore, it is very important to test your Rule Set carefully to avoid disappointing results.
Suppose we want to create a rule to uppercase our brand name when it appears in the topic of a finding. We write this simple Modify Finding rule:
// Uppercase our brandf.t.replace("ascribe", "Ascribe");
We intend for this rule to find all occurrences of the word “ascribe” in the topic and replace it with “Ascribe”. We need to test this rule, because it is not correct!
Rule Editor Dialog
On the Rule Sets page of Ascribe, we create a new Modify Finding rule and enter our code:

To test our rule, we need to make sure the Test part of the dialog is expanded as shown above. If not, click on the word Test to expand that part of the accordion. Now enter the properties of the finding you want to use for testing in the top part of the Test pane. I have entered “ascribe” there for the topic.

Click the Test button below the properties you entered. The properties of the resulting Finding
after your rule runs are displayed below the Test button. They are shown in grey if they have not changed, which is what you see in the picture above. Our rule is not working! The resulting finding still has a lower-case topic:

The problem of course is that the replace method of a string returns the modified value. It does not change the value you pass in, so our topic is unchanged. To correct the code, we add an assignment to f.t
and retest the rule:

Success! We can now save the rule by clicking the OK button.
You probably noticed that I entered properties for f.r
, f.t
, f.e
, and f.x
, even though only f.t
is needed for the test. This is because if any of f.t
, f.e
, or f.x
are empty after the rule runs the result of the rule will be ignored. You can try this in the dialog to see for yourself.
Testing Class rules requires a bit more work. See Using Class Rules in an Ascribe Rule Set for more information.
Testing Edge Cases
Happy with the result of our Modify Finding rule we may decide to add a Modify Response on Load rule to do the same thing. That way our comments will display our brand name with proper case in the Verbatims pane of CX Inspector. We copy our code into a Modify Response on Load rule, change it to operate on f.r
instead of f.t
, and give it a test case with a lowercase brand mention. This type of rule receives only f.r
when it runs. That’s why the other properties of the finding are not shown in the Test pane:

The rule still handles our test case properly, and we may be tempted to consider it completely tested. But we need to test it more. It fails on each of these test cases:
Wow, ascribe is great! I recommend ascribe. ⇒ Wow, Ascribe is great! I recommend ascribe.
Wow, AScribe is great! ⇒ Wow, AScribe is great!
I ascribed his success to luck. ⇒ I Ascribed his success to luck.
The first is because our rule replaces only the first occurrence. The second because our text matching is case sensitive, and the third because we are not replacing only whole words. The simplest fix is to use a regular expression. We can write our rule instead as:
// Uppercase our brandf.r = f.r.replace(/\bascribe\b/ig, "Ascribe");
The ig
flags on the regular expression correct our first two problems, and the use of \b
corrects the third problem. Our rule now handles all our test cases correctly.
Rule Debugging and Validation
Using Print()
As you are testing your rules it can be helpful to print out information for diagnostics. The finding object has a Println()
methods for this purpose. Here is a rule that captures words in the response and prints each to the test pane when the rule runs:
var m = f.r.match(/\b\w+\b/ig);for (var i = 0; i < m.length; i++) { f.Println(m[i]);}
If f.r == "Wow, Ascribe is great!"
, this will print:
"Wow""Ascribe""is""great"
to the Test pane. The Print()
and Println()
methods are identical, except Println()
appends a newline character to the output. Both methods accepts zero or more parameters. If the parameter list is empty a blank line is output. The Print()
and Println()
methods have effect only in the Test pane. When the Rule Set is actually used in an Inspection the methods do nothing. These examples demonstrate the behavior of these methods:
f.Println("Hello world"); // "Hello world"f.Println(null); // ∅f.Println(f); // Rule.Findingf.Println([1,2,3]); // 1,2,3f.Println(new Date(2018, 0, 1)); // Mon Jan 1 00:00:00 PST 2018
In general Print()
writes the result of calling the toString()
method on the parameter passed. However, if the parameter is null
the character ∅
is written, and if the parameter is of type String
the value is enclosed in quotes, as in the first example above. If there are embedded quotes in the string they are escaped in the output:
f.Println("Is \"Jane\" your name?"); // "Is \"Jane\" your name?"
If a JavaScript object is passed (not an Array
, but a pure Object
) it is printed in a style similar to JSON, but only for the top level properties:
f.Println({a: "foo", b: 22, c: [1,2], d: {f: 5}});
produces
{ "a": "foo", "b": 22, "c": 1,2, "d": [object Object]}
The behavior changes when more than one parameter is passed. In that case the values are written sequentially to the output, separate by space characters. This is useful for annotating the output:
var x = 5;f.Println("The value of x is", x); // The value of x is 5
Validation
When you click the Validate or OK button in the rule editor dialog, Ascribe runs a few test cases through your rule to guard against rules that will throw errors at runtime. Among the test cases are zero length strings for the various properties of the finding. Returning to our example above:
var m = f.r.match(/\b\w+\b/ig);for (var i = 0; i < m.length; i++) { f.Println(m[i]);}
If you try this you will find it works fine when testing, but causes a runtime error when you try to save the rule by clicking OK. In the rule above, validation using zero length strings will cause the variable m
to have a value of null
. In the for
statement this will case a runtime error of Exception: Object required
. As a result, the rule cannot be saved as written. It must be corrected by testing m
:
var m = f.r.match(/\b\w+\b/ig);if (m) { for (var i = 0; i < m.length; i++) { f.Print(m[i]); }}
In general, when you receive the error Exception: Object required
at validation time, you likely need to add a test for a valid object before you access a property or method of the object.
7/7/21
Read more